
AIDA-C: Evolutionary Optimization Techniques

applied to Analog IC Design

André Ferreira

Instituto Superior Técnico - ULisbon

Lisboa, Portugal

Abstract—This paper presents an approach to automatically

generate circuit-level design constraints to a layout-aware sizing

approach. The proposed approach is an enhanced version and

implementation of an established method, based on pattern

recognition and symmetry detection, and is integrated in the

AIDAsoft electronic design automation (EDA) environment. The

generation of constraints increases the automation of the design

process and reduces the risk of errors, assisting the project

designer during the design specification setup. The validity and

effectiveness of the proposed approach is illustrated for the

synthesis of classical circuit structures in the AIDAsoft

environment.

Keywords—Analog Integrated Circuit; Electronic Design

Automation; Constraints Generation.

I. INTRODUCTION

Analog integrated circuit (IC) design is still a critical task
as the number of mixed-signal ICs, where analog circuitry play
a decisive role, is increasing. Many EDA approaches have been
proposed in the analog circuit domain to assist in the design
process, but it still lags in the automation level, as such, analog
design is still highly manual and a labor-intensive task.

As analog IC design automation is dominated by
optimization-based sizing approaches that use circuit
simulators as evaluation engines [1, 2, 3]. The quality of a
design is determined by the degree to which compliance
constraints are met and design optimization goals achieved.
With the exception of basic constraints, e.g., saturation/linear
region, defining such constraints requires an experienced
designer to manually craft them. Moreover, specifying design
goals, e.g., DC gain, bandwidth, power consumption, etc., is
not enough to prevent optimizers from finding a solution
meeting those goals, but not reaching a true IC design solution,
or when a practical IC design solution is found, it often shows
high sensitivity to noise, or process/operating variations.

The work presented in this paper automatically adds
constraints on the transistor level that further automate the
design task, while reducing the risk of errors and the
compliance of the obtained solutions. It consists of enhancing
an established method for constraint generation, based on
pattern recognition and symmetry detection, and integrate it in
the AIDAsoft EDA environment [3].

The paper is organized as follows. In section II, the
background and contributions are presented. In section III, the
implemented constraint generation method is reviewed. In
section IV, the results achieved by the integration within

AIDAsoft EDA are discussed. Finally, in section V, the
conclusions are drawn.

II. BACKGROUND AND CONTRIBUTIONS

Circuit sizing is in its essence a multi-objective multi-
constraint problem where the designer explores tradeoffs
between performance measures. The correct specification of
design constraints is critical for conducting the optimization
process through the solution space.

Even experienced circuit designers, who possess the
knowledge to properly define the constraints for a given circuit,
may overlook some constraints, either because the designer is
not aware of the constraint, or does not consider it to be
relevant, or simply by a lapse in the setup. This way the
optimizers can take longer to find a solution, become unable to
find a solution, or allowing the optimizer to find unsuitable
solutions, i.e., solutions that meet the specified constraints but
fail in later verifications, forcing expensive redesigns.

A. State-of-the-Art on Automatic Constraint Generation

Automatically adding a complete set of constraints not only
reduces setup time, but would make the circuit more robust
when considering process and operating variations. With this
target in mind, some constraint generation approaches have
been proposed by the EDA community. In the Sizing Rules
Method (SRM) [4], design patterns are found in the circuit, so
that, some sizing rules can be generated without any input from
the designer. This reduces setup time and effort, as well as
optimization times, as mentioned earlier. The SRM can
efficiently capture design knowledge on the technology
specific level of transistor groups. Further increasing the SRM
capabilities, the Hierarchical Placement Rules (HPR) [5]
generates a structural signal flow graph (SSFG) to detect
symmetries in the circuit. This SSFG works as a qualitative
model of the circuit. Proximity constraints according to the
building blocks are also considered. In Matching-Driven
Analog Sizing (MARS) [6] further improves the HPR
symmetry detection by partitioning the circuit in a core and
bias sub-circuits, behavioral signal flow analysis, and by
including some single-ended passive devices.

B. Contributions

The goals of this work are set to enhance and implement a
variation of the SRM and HPR methods, and also, validate the
resulting constraint generation module within AIDA [3]. AIDA
is an analog IC design automation framework composed of two
main tools: AIDA-C and AIDA-L. AIDA-C targets automatic
circuit sizing and optimization. It is based in state-of-the-art
multi-objective, multi-constraint optimization techniques and

targets highly robust designs [7]. AIDA-L target automatic
layout generation, both standalone and in-loop layout-aware
circuit sizing. Its optimization based floorplanner [8], uses
designer specified knowledge such as symmetry, matching and
current flow constraints, that are here automatically generated.

Sizing constraints will be generated and provided to AIDA-
C to be considered during the optimization process, proximity
symmetry, and current-flow constraints will be provided to
AIDA-L for use during the layout generation. Although the
proposed method for constraint generation is based on SRM
and HPR methods, there are several differences in the
implemented approach, such as: (a) a simpler and faster
method to circuit pattern recognition; (b) a signal and current
flow hybrid graph rather than just signal flow graph; (c)
detection of higher priority self-symmetries; and (d) ability to
add new patterns or remove/edit existing patterns in the library.

III. CONSTRAINT EXTRACTION FROM A NETLIST

The automated constraint generation process is illustrated
in Fig. 1. The process starts by parsing the netlist, then a
pattern detection phase is executed, which lead to the definition
of the pattern constraints (e.g. overdrive voltages, VDS
matching between devices, etc.), and also, in this phase the
design variables are set as netlist parameters. The next phase is
the generation of the circuit’s graph that is used for symmetry
detection, which lead to the set symmetry constraints to be
used in the layout generation. The circuit’s graph is also used
to generate the current flow constraints for the layout
generation. The outputs of the tool are the parameterized
netlist, a set of functional constraints (with the respective
measure statement to be included in the testbench), the
symmetry between devices and the current flows. Both phases
are detailed in the next subsections.

Technology specific

variables file

MP1 D G S B
MP2 D G S B

.

.

Netlist parsing
and transistor

detection

Pattern
detection

Variables & pattern-
specific constraints

assignment

Circuit graph
generation

Symmetry
detection

Symmetry-related
constraints
assignment

Automated Constraint Generation

Classes with Building

block patterns and

respective constraints

and matchings

Configuration
Constraints
SubGraph

...

Circuit Netlist

 M1 ... L=L1 W=W1
 M2 ... L=L2 W=W1

Parameterized Netlist

|Vds(M1)-Vds(M2)|< 5mV
.

Constraints

 <M1>
 M2 <> M3

Symmetry

VDD > M1 > (M4 > M5), (M6 > M7) >
GND

Current Flow

Figure 1. Automated Constraint Generation architecture

A. Pattern Detection

 After reading the netlist and establishing the transistor
database, a search for patterns is executed following the 2-level
approach in SRM, generating the first level of building blocks
of the circuit, as illustrated in Fig. 2. Determining the second
level of building blocks is done through a similar step,
matching each level 1 building block either to a transistor, or to
another level 1 building block to a level 2 pattern.

SCM

VR I

VR II

CML

CP

LS

CCP

DP

SCM Simple Current Mirror
LS Level Shifter
CCP Cross Coupled Pair
DP Differential Pair
VRI Voltage Reference I
VRII Voltage Reference II
CML Current Mirror Load
CP Cascode Pair

Figure 2. Pattern searching order hierarchy

The design variables and the constraints are determined
from the building blocks and the patterns’ associated
constraints. Proximity constraints are attributed mainly to
transistors that are contained in the same building blocks. In
addition, the implemented Constraint Generation allows the
designer to implement new patterns to describe personalized
and/or specific transistor configurations, or change the
constraints associated with already existing patterns. Defining a
new pattern requires assigning a list of port connections
between devices/building blocks, constraints associated with
the pattern, and the pattern’s current and signal graph.

B. Symmetry Detection

After determining all the building blocks, the current and
signal flow graphs are created by merging the subgraphs of the
building blocks. Once the graph is generated, a search similar
to the HPR approach for symmetric nodes is made. To start a
search, a pair of symmetric nodes has to be previously
determined. To find a pair of nodes that are considered
symmetric, the Differential Pair and Cross-Coupled Pair are
considered to be symmetric patterns, and the transistors’ gates
are the starting pair of symmetric nodes. To find further
symmetries, each given symmetric pair is searched for similar
edges pointing to (or from) another pair of nodes. Edges are
considered similar if they are originated from the same pattern
and are of the same transistor “type” (p-mos or n-mos). The
process repeats iteratively for the newly found symmetric pair.
The method used includes symmetry search in the opposite
direction of the edges, which was not implemented in HPR.
This aids in determining further symmetries that would
otherwise not be detected.

Figure 3 shows the fully differential two stage amplifier
found in [9] with the detected patterns and symmetries
overlaid. In the shaded regions, and the symmetric pairs in
dashed line boxes (boxes with a single transistor represent self-
symmetry). The constraint generation processing time took less
than one second, and the output was the expected, consisting of
the constraints from each detected pattern and symmetry.

Differential
Pair

Level Shifter Bank

Wide Swing Cascode
Current Mirror Bank

Simple Current
Mirror Bank

Simple Current MirrorM2M1 M3

M4 M5

M6

M7

M8

M9

M10

M11

M12

M13

M14 M15

M16 M17

M19M18

M20 M21

M22 M23

M24

Iref

VinN VinP

VoutN VoutP
VCMFB

VCMFB1

Figure 3. Fully diferential amplifier building blocks and symmetries.

M2M1 M3

M4 M5

M6

M7

M8

M9

M10

M11

M12

M13

M14 M15

M16 M17

M19M18

M20 M21

M22
M23

M24

VinP VinN

Iref
VoutP VoutN

Figure 4. Fully diferential amplifier current and signal flow.

C. Integration with AIDA

Adding a circuit to AIDA is a two-step operation. First, the
circuit netlist needs to be provided, and then, using AIDA-C’s
setup assistant to accelerate the process, a file based design
structure is created, where the file design.xml is the main
description [3]. The Automated Constraint Generator reads the
original netlist and generates a parameterized netlist, the set of
relevant structural constraints (overdrive voltages, deltas,
active areas) and the respective measure statements for the
simulator being used, symmetries and current flow constraints.
The design.xml is then completed with the constraints
associated to the identified patterns, and, the layout template
with the detected symmetry and current flow constraints.

IV. RESULTS

The focus on this paper is to generate constraints based on a
given circuit netlist in an automated manner. The results shown
focus on the detected patterns, generated constraints and
reduced setup time, rather than the computation time used for
constraint generation. This is mostly because the design of a
circuit is a process that takes days or even weeks, and speeding
a module that takes less than one second gives no actual benefit
to the designing process. Different types of constraints are also
not considered since the designer can choose to customize the
constraints associated to the symmetries and to each pattern,
along with the fact that previous design projects already
include constraints introduced manually by the designer.

A. Optimization results with AIDA-C

The circuit shown in Figure 5 is a two stage folded cascode
amplifier, the detected building blocks, in the shaded regions,
and the symmetric pairs in dashed line boxes. This example
shows that some transistors are part of different building
blocks, namely transistors M10 and M11, which belong to the
Wide Swing Cascode Current Mirror, and a Level Shifter bank,
and thus have their W’s and L’s matched accordingly, while
not creating any conflict in the constraints. The circuit was
optimized in AIDA-C project with the automatically generated
constraints, and also, using a previous setup with manual
constraints that only guarantee saturation and overdrive of the
transistors. The optimization goals in both runs were set to
maximize gain-bandwidth (GBW) and minimize current
consumption (Idd).

Level Shifter Bank

Level Shifter
Bank

Simple Current
Mirror Bank

Simple Current
Mirror Bank

Cascode
Current Mirror

Cascode Current
Mirror Bank

Wide Swing Cascode
Current Mirror

Differential Pair

M2 M3 M7

M1 M4

M8 M9

M10 M11

M18M19

M12 M13

M14 M15

M5

M6

M16

M17

VinP VinN

Iref

Vout

Figure 5. Single ended two-stage folded cascode

Figure 6 shows the Pareto Optimal Fronts (POFs) resulting
from both optimizations, where it’s clear that the POF from
manual setup is wider that the one obtained when considering
the automatically generated constraints. This result was
expected, as the extra constraints generated by the constraint
generation module will create further limitations in the feasible
space.

Figure 6. POF achieved with manual and automatic constraints

To compare the quality and robustness of the obtained
solutions, the solutions from each POF with larger GBW
(Manual 1 and Automatic) were selected and a Monte Carlo
(MC) analysis was applied to them. One additional solution
from the manual POF was picked, to have similar Idd and
GBW characteristics to the automated solution, for the sake of
fairness in the analysis. Table I shows the nominal current and
gain-bandwidth, the nominal and average offset voltage, the
performance that shows larger variability in the MC
simulations, and the variance of each of them. With respect to
the offset voltage, the most problematic performance in this
project after MC, in both manual designs the degradation takes
the circuit outside the limit, 5mV, showing both higher average
and variance.

TABLE I. MONTE CARLO ANALYSIS

 Current cons. Gain-Bandwidth Offset Voltage

Simulation
Nominal

[mA]
Variance

[µA]
Nominal
[MHz]

Variance
[KHz]

Nominal
(Average)

[mV]

Variance
[µV]

Manual 1 33,71 46,22 14,9 109.173,7 0,147(21,79) 288,13

Manual 2 2,486 0,212 1,55 174,02 0.037(9,757) 57,19

Automated 3,175 0,2725 1,77 69,327 0.009(3,032) 5,097

Figure 7 shows the resulting histograms for the 450 MC
simulations. The X-axis values were normalized using the
performance’s nominal values. The histograms show that the
circuits sized with manually written constraints are more
sensible to variations when compared to the automatically
generated constraints.

Manual 1

Automatic

Manual 2

 GBW IDD

M
an

u
al

 1

0

50

100

150

200

0,812 1 1,027

0

20

40

60

80

0,979 1 1,017

M
an

u
al

 2

0

40

80

120

160

0,934 1 1,027

0

15

30

45

60

75

90

0,981 1 1,020

A
u
to

m
at

ic

0

25

50

75

0,986 1 1,014

0

20

40

60

80

0,982 1 1,018

Figure 7. GBW and IDD histograms for 450 Monte Carlo simulations.

B. Layout Generation with AIDA-L

The fully deferential OTA from [10], whose schematic is
show in Figure 8 (a), has a differential structure without the
differential pair, thus making the Differential Pair pattern
undetectable, leading to the lack of detection of any symmetric
pattern. However, even if no symmetry from building blocks
was found, there are several ways to determine symmetric
nodes (indicated by the designer, parsed by the module,
specific node names, etc.). In this example, both input nodes
were considered symmetric, and once the two nodes are
determined to be symmetric, the circuit symmetries are found
from the transistors (the basic building block) sub-graph.
Figure 8 (a) also shows the detected symmetries and current
flows. In Figure 8 (b), a floorplan obtained from AIDA-L
optimization-based Placer using the detected symmetries and
current flow constraints [8].

M9

M8

M4

M10

M7

M2

M6M5
vinvip

M12M11

VSS

M1

von

M3
SCM

vop

SCM
VDD

VDD

(a) (b)

Figure 8. Fully Differential OTA (a) shcematic and detected symetries

and patterns; (b) floorplan obtained from AIDA-L optimization-
based Placer, with routing.

V. CONCLUSIONS

This paper presents an enhanced method in automatic
analog IC constraint determination. The developed module
finds patterns efficiently and accurately, finds symmetries and
self-symmetries, generates constraints associated with each
pattern and symmetry, which are suitable to be sent to the
sizing and layout automation tools. The methodology was
tested, and it showed capability in determining the building
blocks and symmetries and in generating constraints, even in
circuits with a very low ratio of transistors with assigned
patterns. One of the circuits was run for a full optimization
project, to compare previously written constraints with the
newly generated ones, and despite reduced range of solutions
in the nominal POF obtained from the more stringent set of
constraints, they were more robust when considering
variability. Furthering the relevance of automatic constraints,
one other example was considered for fully automatic layout
generation using the automatically extracted symmetries and
current flow constraints together with AIDA-L.

ACKNOWLEDGEMENT

This work was supported in part by the Instituto de

Telecomunicações (Research project OPERA PEST-

OE/EEI/LA0008/2013) and by the Fundação para a Ciência e

Tecnologia (Research project DISRUPTIVE EXCL/EEI-

ELC/0261/2012, Research project UID/EEA/50008/2013 and

SFRH/BPD/104648/2014).

REFERENCES

[1] E. Roca, M. Velasco-Jiménez, R. Castro-López and F. V. Fernández,
“Context-dependent transformation of Pareto-optimal performance
fronts of operational amplifiers”, Analog Integrated Circuits and Signal
Processing, vol. 73, no. 1, pp. 65-76, 2012.

[2] H. Gupta, and B. Ghosh, “Analog Circuits Design Using Ant Colony
Optimization”, International Journal of Electronics, Computer &
Communications Technologies, vol. 2, no. 3, pp. 9-21, 2012.

[3] R. Martins, N. Lourenço, A. Canelas, R. Póvoa and, N. Horta, “AIDA:
Robust Layout-Aware Synthesis of Analog ICs including Sizing and
Layout Generation”, Int. Conference on SMACD, pp. 1-4, 2015.

[4] T. Massier, H. Graeb and U. Schlichtmann, "The Sizing Rules Method
for CMOS and Bipolar Analog Integrated Circuit Synthesis," IEEE
Transactions on Compututer-Aided Design of Integrated Circuits and
Systems (IEEE TCAD), vol. 27, no. 12, pp. 2209-2222, December 2008.

[5] M. Eick, M. Strasser, K. Lu, U. Schlichtmann and H. Graeb,
"Comprehensive Generation of Hierachical Placement Rules for Analog
Integrated Circuits," IEEE Transactions on Compututer-Aided Design of
Integrated Circuits and Systems, vol. 30, no. 2, pp. 180-193, Feb. 2011.

[6] M. Eick and H. Graeb, "MARS: Matching-Driven Analog Sizing," IEEE
TCAD, vol. 31, no. 8, pp. 1145-1158, August 2013.

[7] N. Lourenço, A. Canelas, R. Póvoa, R. Martins and N. Horta,
"Floorplan-aware analog IC sizing and optimization based on
topological constraints," Integration, the VLSI Journal, Elsevier, p. (in
press), 2014.

[8] R. Martins, R. Póvoa, N. Lourenço, and N. Horta, "Exploring Design
Tradeoffs in Analog IC Placement with Current-Flow & Current-
Density Considerations", International Conference on SMACD, pp. 1-4,
2015.

[9] E. Santin, L. Oliveira, B. Nowacki, and J. Goes, “A Fully Integrated and
Reconfigurable Architecture for Coherent Self-Testing of High Speed
Analog-to-Digital Converters”, IEEE Transactions on Circuits and
Systems – I, vol. 58, no. 7, pp. 1531-1541, Jul. 2011

[10] R Póvoa, N. Lourenço, N. Horta, R Santos-Tavares, J. Goes, “Single-
Stage Amplifirers with Gain Enhancement and Improved Energy-
Efficiency employing Voltage-Combiners”, Very Large Scale
Integration (VLSI-SoC), 2013 IFIP/IEEE 21st International Conference
on, pp. 19-22, Oct 2013.

