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Abstract—This paper presents an approach to automatically 

generate circuit-level design constraints to a layout-aware sizing 

approach. The proposed approach is an enhanced version and 

implementation of an established method, based on pattern 

recognition and symmetry detection, and is integrated in the 

AIDAsoft electronic design automation (EDA) environment. The 

generation of constraints increases the automation of the design 

process and reduces the risk of errors, assisting the project 

designer during the design specification setup. The validity and 

effectiveness of the proposed approach is illustrated for the 

synthesis of classical circuit structures in the AIDAsoft 

environment. 
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I.  INTRODUCTION 

Analog integrated circuit (IC) design is still a critical task 
as the number of mixed-signal ICs, where analog circuitry play 
a decisive role, is increasing. Many EDA approaches have been 
proposed in the analog circuit domain to assist in the design 
process, but it still lags in the automation level, as such, analog 
design is still highly manual and a labor-intensive task. 

As analog IC design automation is dominated by 
optimization-based sizing approaches that use circuit 
simulators as evaluation engines [1, 2, 3]. The quality of a 
design is determined by the degree to which compliance 
constraints are met and design optimization goals achieved. 
With the exception of basic constraints, e.g., saturation/linear 
region, defining such constraints requires an experienced 
designer to manually craft them. Moreover, specifying design 
goals, e.g., DC gain, bandwidth, power consumption, etc., is 
not enough to prevent optimizers from finding a solution 
meeting those goals, but not reaching a true IC design solution, 
or when a practical IC design solution is found, it often shows 
high sensitivity to noise, or process/operating variations.  

The work presented in this paper automatically adds 
constraints on the transistor level that further automate the 
design task, while reducing the risk of errors and the 
compliance of the obtained solutions. It consists of enhancing 
an established method for constraint generation, based on 
pattern recognition and symmetry detection, and integrate it in 
the AIDAsoft EDA environment [3].  

The paper is organized as follows. In section II, the 
background and contributions are presented. In section III, the 
implemented constraint generation method is reviewed. In 
section IV, the results achieved by the integration within 

AIDAsoft EDA are discussed. Finally, in section V, the 
conclusions are drawn. 

 

II. BACKGROUND AND CONTRIBUTIONS 

Circuit sizing is in its essence a multi-objective multi-
constraint problem where the designer explores tradeoffs 
between performance measures. The correct specification of 
design constraints is critical for conducting the optimization 
process through the solution space.  

Even experienced circuit designers, who possess the 
knowledge to properly define the constraints for a given circuit, 
may overlook some constraints, either because the designer is 
not aware of the constraint, or does not consider it to be 
relevant, or simply by a lapse in the setup. This way the 
optimizers can take longer to find a solution, become unable to 
find a solution, or allowing the optimizer to find unsuitable 
solutions, i.e., solutions that meet the specified constraints but 
fail in later verifications, forcing expensive redesigns.  

A. State-of-the-Art on Automatic Constraint Generation 

Automatically adding a complete set of constraints not only 
reduces setup time, but would make the circuit more robust 
when considering process and operating variations. With this 
target in mind, some constraint generation approaches have 
been proposed by the EDA community. In the Sizing Rules 
Method (SRM) [4], design patterns are found in the circuit, so 
that, some sizing rules can be generated without any input from 
the designer. This reduces setup time and effort, as well as 
optimization times, as mentioned earlier. The SRM can 
efficiently capture design knowledge on the technology 
specific level of transistor groups. Further increasing the SRM 
capabilities, the Hierarchical Placement Rules (HPR) [5] 
generates a structural signal flow graph (SSFG) to detect 
symmetries in the circuit. This SSFG works as a qualitative 
model of the circuit. Proximity constraints according to the 
building blocks are also considered. In Matching-Driven 
Analog Sizing (MARS) [6] further improves the HPR 
symmetry detection by partitioning the circuit in a core and 
bias sub-circuits, behavioral signal flow analysis, and by 
including some single-ended passive devices. 

B. Contributions 

The goals of this work are set to enhance and implement a 
variation of the SRM and HPR methods, and also, validate the 
resulting constraint generation module within AIDA [3]. AIDA 
is an analog IC design automation framework composed of two 
main tools: AIDA-C and AIDA-L. AIDA-C targets automatic 
circuit sizing and optimization. It is based in state-of-the-art 
multi-objective, multi-constraint optimization techniques and 



targets highly robust designs [7]. AIDA-L target automatic 
layout generation, both standalone and in-loop layout-aware 
circuit sizing. Its optimization based floorplanner [8], uses 
designer specified knowledge such as symmetry, matching and 
current flow constraints, that are here automatically generated. 

Sizing constraints will be generated and provided to AIDA-
C to be considered during the optimization process, proximity 
symmetry, and current-flow constraints will be provided to 
AIDA-L for use during the layout generation. Although the 
proposed method for constraint generation is based on SRM 
and HPR methods, there are several differences in the 
implemented approach, such as: (a) a simpler and faster 
method to circuit pattern recognition; (b) a signal and current 
flow hybrid graph rather than just signal flow graph; (c) 
detection of higher priority self-symmetries; and (d) ability to 
add new patterns or remove/edit existing patterns in the library. 

III. CONSTRAINT EXTRACTION FROM A NETLIST 

The automated constraint generation process is illustrated 
in Fig. 1. The process starts by parsing the netlist, then a 
pattern detection phase is executed, which lead to the definition 
of the pattern constraints (e.g. overdrive voltages, VDS 
matching between devices, etc.), and also, in this phase the 
design variables are set as netlist parameters. The next phase is 
the generation of the circuit’s graph that is used for symmetry 
detection, which lead to the set symmetry constraints to be 
used in the layout generation. The circuit’s graph is also used 
to generate the current flow constraints for the layout 
generation. The outputs of the tool are the parameterized 
netlist, a set of functional constraints (with the respective 
measure statement to be included in the testbench), the 
symmetry between devices and the current flows. Both phases 
are detailed in the next subsections. 

Technology specific 

variables file

MP1  D G S B ....    
MP2  D G S B ....   

.

.

Netlist parsing 
and transistor 

detection

Pattern 
detection

Variables & pattern-
specific constraints 

assignment

Circuit graph 
generation

Symmetry 
detection

Symmetry-related 
constraints 
assignment

Automated Constraint Generation

Classes with Building 

block patterns and 

respective constraints 

and matchings

Configuration
Constraints
SubGraph

...

Circuit Netlist

      M1   ...    L=L1    W=W1
      M2   ...    L=L2    W=W1
        

Parameterized Netlist

|Vds(M1)-Vds(M2)|< 5mV
.

Constraints

 <M1>
 M2 <> M3

Symmetry

VDD > M1 > (M4 > M5), (M6  > M7) > 
GND

Current Flow

 
Figure 1. Automated Constraint Generation architecture 

A. Pattern Detection 

 After reading the netlist and establishing the transistor 
database, a search for patterns is executed following the 2-level 
approach in SRM, generating the first level of building blocks 
of the circuit, as illustrated in Fig. 2. Determining the second 
level of building blocks is done through a similar step, 
matching each level 1 building block either to a transistor, or to 
another level 1 building block to a level 2 pattern.  
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Figure 2. Pattern searching order hierarchy 

The design variables and the constraints are determined 
from the building blocks and the patterns’ associated 
constraints. Proximity constraints are attributed mainly to 
transistors that are contained in the same building blocks. In 
addition, the implemented Constraint Generation allows the 
designer to implement new patterns to describe personalized 
and/or specific transistor configurations, or change the 
constraints associated with already existing patterns. Defining a 
new pattern requires assigning a list of port connections 
between devices/building blocks, constraints associated with 
the pattern, and the pattern’s current and signal graph. 

B. Symmetry Detection 

After determining all the building blocks, the current and 
signal flow graphs are created by merging the subgraphs of the 
building blocks. Once the graph is generated, a search similar 
to the HPR approach for symmetric nodes is made. To start a 
search, a pair of symmetric nodes has to be previously 
determined. To find a pair of nodes that are considered 
symmetric, the Differential Pair and Cross-Coupled Pair are 
considered to be symmetric patterns, and the transistors’ gates 
are the starting pair of symmetric nodes. To find further 
symmetries, each given symmetric pair is searched for similar 
edges pointing to (or from) another pair of nodes. Edges are 
considered similar if they are originated from the same pattern 
and are of the same transistor “type” (p-mos or n-mos). The 
process repeats iteratively for the newly found symmetric pair. 
The method used includes symmetry search in the opposite 
direction of the edges, which was not implemented in HPR. 
This aids in determining further symmetries that would 
otherwise not be detected. 

Figure 3 shows the fully differential two stage amplifier 
found in [9] with the detected patterns and symmetries 
overlaid. In the shaded regions, and the symmetric pairs in 
dashed line boxes (boxes with a single transistor represent self-
symmetry). The constraint generation processing time took less 
than one second, and the output was the expected, consisting of 
the constraints from each detected pattern and symmetry. 
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Figure 3. Fully diferential amplifier building blocks and symmetries. 
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Figure 4. Fully diferential amplifier current and signal flow. 

C. Integration with AIDA 

Adding a circuit to AIDA is a two-step operation. First, the 
circuit netlist needs to be provided, and then, using AIDA-C’s 
setup assistant to accelerate the process, a file based design 
structure is created, where the file design.xml is the main 
description [3]. The Automated Constraint Generator reads the 
original netlist and generates a parameterized netlist, the set of 
relevant structural constraints (overdrive voltages, deltas, 
active areas) and the respective measure statements for the 
simulator being used, symmetries and current flow constraints. 
The design.xml is then completed with the constraints 
associated to the identified patterns, and, the layout template 
with the detected symmetry and current flow constraints. 

IV. RESULTS 

The focus on this paper is to generate constraints based on a 
given circuit netlist in an automated manner. The results shown 
focus on the detected patterns, generated constraints and 
reduced setup time, rather than the computation time used for 
constraint generation. This is mostly because the design of a 
circuit is a process that takes days or even weeks, and speeding 
a module that takes less than one second gives no actual benefit 
to the designing process. Different types of constraints are also 
not considered since the designer can choose to customize the 
constraints associated to the symmetries and to each pattern, 
along with the fact that previous design projects already 
include constraints introduced manually by the designer. 

A. Optimization results with AIDA-C 

The circuit shown in Figure 5 is a two stage folded cascode 
amplifier, the detected building blocks, in the shaded regions, 
and the symmetric pairs in dashed line boxes. This example 
shows that some transistors are part of different building 
blocks, namely transistors M10 and M11, which belong to the 
Wide Swing Cascode Current Mirror, and a Level Shifter bank, 
and thus have their W’s and L’s matched accordingly, while 
not creating any conflict in the constraints. The circuit was 
optimized in AIDA-C project with the automatically generated 
constraints, and also, using a previous setup with manual 
constraints that only guarantee saturation and overdrive of the 
transistors. The optimization goals in both runs were set to 
maximize gain-bandwidth (GBW) and minimize current 
consumption (Idd).  

Level Shifter Bank

Level Shifter 
Bank

Simple Current 
Mirror Bank

Simple Current 
Mirror Bank

Cascode 
Current Mirror

Cascode Current 
Mirror Bank

Wide Swing Cascode 
Current Mirror

Differential Pair

M2 M3 M7

M1 M4

M8 M9

M10 M11

M18M19

M12 M13

M14 M15

M5

M6

M16

M17

VinP VinN

Iref

Vout

 
Figure 5. Single ended two-stage folded cascode 

Figure 6 shows the Pareto Optimal Fronts (POFs) resulting 
from both optimizations, where it’s clear that the POF from 
manual setup is wider that the one obtained when considering 
the automatically generated constraints. This result was 
expected, as the extra constraints generated by the constraint 
generation module will create further limitations in the feasible 
space. 

 
Figure 6. POF achieved with manual and automatic constraints 

To compare the quality and robustness of the obtained 
solutions, the solutions from each POF with larger GBW 
(Manual 1 and Automatic) were selected and a Monte Carlo 
(MC) analysis was applied to them. One additional solution 
from the manual POF was picked, to have similar Idd and 
GBW characteristics to the automated solution, for the sake of 
fairness in the analysis. Table I shows the nominal current and 
gain-bandwidth, the nominal and average offset voltage, the 
performance that shows larger variability in the MC 
simulations, and the variance of each of them. With respect to 
the offset voltage, the most problematic performance in this 
project after MC, in both manual designs the degradation takes 
the circuit outside the limit, 5mV, showing both higher average 
and variance.  

TABLE I.  MONTE CARLO ANALYSIS 

 Current cons. Gain-Bandwidth Offset Voltage 

Simulation 
Nominal 

[mA] 
Variance 

[µA] 
Nominal 
[MHz] 

Variance 
[KHz] 

Nominal 
(Average) 

[mV] 

Variance 
[µV] 

Manual 1 33,71 46,22 14,9 109.173,7 0,147(21,79) 288,13 

Manual 2 2,486 0,212 1,55 174,02 0.037(9,757) 57,19 

Automated 3,175 0,2725 1,77 69,327 0.009(3,032) 5,097 

Figure 7 shows the resulting histograms for the 450 MC 
simulations. The X-axis values were normalized using the 
performance’s nominal values. The histograms show that the 
circuits sized with manually written constraints are more 
sensible to variations when compared to the automatically 
generated constraints.  
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Figure 7. GBW and IDD histograms for 450 Monte Carlo simulations. 

B. Layout Generation with AIDA-L 

The fully deferential OTA from [10], whose schematic is 
show in Figure 8 (a), has a differential structure without the 
differential pair, thus making the Differential Pair pattern 
undetectable, leading to the lack of detection of any symmetric 
pattern. However, even if no symmetry from building blocks 
was found, there are several ways to determine symmetric 
nodes (indicated by the designer, parsed by the module, 
specific node names, etc.). In this example, both input nodes 
were considered symmetric, and once the two nodes are 
determined to be symmetric, the circuit symmetries are found 
from the transistors (the basic building block) sub-graph. 
Figure 8 (a) also shows the detected symmetries and current 
flows. In Figure 8 (b), a floorplan obtained from AIDA-L 
optimization-based Placer using the detected symmetries and 
current flow constraints [8]. 
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Figure 8. Fully Differential OTA (a) shcematic and detected symetries 

and patterns; (b) floorplan obtained from AIDA-L optimization-
based Placer, with routing. 

V. CONCLUSIONS 

This paper presents an enhanced method in automatic 
analog IC constraint determination. The developed module 
finds patterns efficiently and accurately, finds symmetries and 
self-symmetries, generates constraints associated with each 
pattern and symmetry, which are suitable to be sent to the 
sizing and layout automation tools. The methodology was 
tested, and it showed capability in determining the building 
blocks and symmetries and in generating constraints, even in 
circuits with a very low ratio of transistors with assigned 
patterns. One of the circuits was run for a full optimization 
project, to compare previously written constraints with the 
newly generated ones, and despite reduced range of solutions 
in the nominal POF obtained from the more stringent set of 
constraints, they were more robust when considering 
variability. Furthering the relevance of automatic constraints, 
one other example was considered for fully automatic layout 
generation using the automatically extracted symmetries and 
current flow constraints together with AIDA-L. 
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